
Parallel Programming Patterns
Heterogeneous Computing

Professor: Dr. Joel Fuentes - jfuentes@ubiobio.cl

Teaching Assistants:
• Daniel López - daniel.lopez1701@alumnos.ubiobio.cl
• Sebastián González - sebastian.gonzalez1801@alumnos.ubiobio.cl

Course website: http://www.face.ubiobio.cl/~jfuentes/classes/ch

mailto:jfuentes@ubiobio.cl
mailto:daniel.lopez1701@alumnos.ubiobio.cl
mailto:sebastian.gonzalez1801@alumnos.ubiobio.cl
http://www.face.ubiobio.cl/~jfuentes/classes/ch


Design patterns

1. Parallel Control Patterns

2. Data Management Patterns 

3. Other Patterns
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Parallel design patterns

• A design pattern is a combination of recurring tasks that solves a specific problem in 
designing parallel algorithms.

• Patterns provide a "vocabulary" for algorithm design.

• It can be useful to compare parallel patterns with serial patterns.

• Patterns are universal, they can be used in any parallel programming system.
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Parallel Control Patterns

• Extend from serial control patterns

• Each parallel control pattern is related to at least one serial control pattern, but with more 
flexible specifications.

• Parallel control patterns: fork-join, map, stencil, reduction, scan, recurrence
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Parallel Control Patterns: Fork-join

• Fork-join: allows you to control the flow to multiple parallel flows, and then join them. 

• Many programming languages implement this pattern by spawn and sync
• The call tree is a tree of parallel calls and functions that are executed in parallel flow (spawned)
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Parallel Control Patterns: Map

• Map: executes a function on all items in a collection

• Replicates a serial iteration where each iteration is independent of others. The number of 
iterations is known, and the computation only depends on the iteration and data from the 
collection. 

• The replicated function is referred to as "elementary function”
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Parallel Control Patterns: Stencil

• Stencil: Corresponds to a Generalization of Map. Elementary function that accesses a set 
of "neighbors"” 

• Usually combined with iteration

• Edge conditions must be handled carefully.
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Parallel Control Patterns: Reduction

• Reduction: Combine each item into a collection using a "merge function"

• Different reduction orders are possible.

• Examples of merge functions: add, mul, max, min, AND, OR, and XOR
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Parallel Control Patterns: Reduction

9

Serial Reduction Parallel Reduction



Parallel Control Patterns: Scan

• Scan: computes partial reductions in a collection

• For each output in a collection, a reduction in input to that point is executed..

• If the function used is associative, the scan can be parallelized

• Parallelizing the scan is not trivial, as dependencies to previous iterations may exist in the 
loop.

• A parallel scan will require more operations than the serial version.
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Parallel Control Patterns: Scan
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Parallel Control Patterns: Recurrence

• Recurrence: More complex version than Map, where loop iterations may depend on others

• Similar to Map, but elements can use outputs from adjacent elements as inputs

• For a recurrence to be executable, there must be a serial order of the recurrence of 
elements such that they can be computed using previously generated outputs..
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1. Parallel Control Patterns
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Parallel Data Patterns

• To avoid problems such as data-race, it is important to know where the data is and if it is 
shared by multiple processes or threads.

• Some data management patterns help with data localization.
• Data available when processes need it.

• Avoid cache misses.

• Parallel data management patterns: pack, pipeline, geometric decomposition, gather
and scatter
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Pack

• Pack is used to delete unused space in a collection.

• Items marked false are discarded/deleted, and the remaining items located in a contiguous 
sequence in the same order. 

• Useful when using Map

• Unpack is the reverse pattern and 

is used to locate Return 

elements in their original positions
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Pipeline

• Pipeline connects tasks in a producer-consumer form

• A linear pipeline is the basic idea of the pattern, however variations as in a 

• DAG graph is also possible.

• Pipelines are useful when used with other patterns that get higher

• parallelism.
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Geometric Decomposition

• Geometric Decomposition– organizes data into sub-collections.

• Decomposition with overlap and without overlap are possible.

• This pattern does not necessarily move data, it only gives us another view of this.
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Gather

• Gather reads a collection of data given a collection of indexes.

• It can be imagined as a combination of map and random serial readings. 

• the resulting collection shares the same type of the input collection but the same size as 
the index collection.
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Scatter

• Scatter is the inverse of gather

• A dataset and an index set are required. Each element of the entry is written as a result in 
the index delivered for that position. 

• Data-race conditions can occur when two elements are written to the same location.
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Other Parallel Patterns: AoS vs SoA

• Array of Structures (AoS)
• Can deliver better cache utilization if data is accessed randomly.
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Other Parallel Patterns: AoS vs SoA

• Structures of Arrays (SoA)
• Typically better for vectorization.
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Other Parallel Patterns: AoS vs SoA

• Organization in memory:
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Other Parallel Patterns: AoS vs SoA
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Other Parallel Patterns: AoS vs SoA

• More logical type of organization.

• Extremely difficult to access by gathers and 
scatters.

• Not very useful for vectorization.
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Other Parallel Patterns: AoS vs SoA

• Separate arrangements for each 
field of the structure.

• Maintains contiguous memory 
access when vectorization.
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Summary

• Parallel control patterns
• fork-join, map, stencil, reduction, scan, recurrence

• Data management patterns
• pack, pipeline, geometric decomposition, gather and scatter

• Other patterns
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Examples using patterns

• Merge sort with reductions

• Sort an array of integers using map and reduction.

• Idea: Map each element into a single-element vector and then apply the merge operation 
between vectors.
• <> is the merge operation : [1,3,5,7] <> [2,6,15] = [1,2,3,5,6,7,15]

• [] is the empty list.
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Examples using patterns

Input: [14,3,4,8,7,52,1]

Mapped to [[14],[3],[4],[8],[7],[52],[1]]

Reduction from the right:

[14] <> ([3] <> ([4] <> ([8] <> ([7] <> ([52] <> [1])))))

= [14] <> ([3] <> ([4] <> ([8] <> ([7] <> [1,52]))))

= [14] <> ([3] <> ([4] <> ([8] <> [1,7,52])))

= [14] <> ([3] <> ([4] <> [1,7,8,52]))

= [14] <> ([3] <> [1,4,7,8,52])

= [14] <> [1,3,4,7,8,52]

= [1,3,4,7,8,14,52]
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Examples using patterns

Input: [14,3,4,8,7,52,1]

Mapped to [[14],[3],[4],[8],[7],[52],[1]]

Reduction as a tree:

(([14] <> [3]) <> ([4] <> [8])) <> (([7] <> [52]) <> [1])

= ([3,14] <> [4,8]) <> ([7,52] <> [1])

= [3,4,8,14] <> [1,7,52]

= [1,3,4,7,8,14,52]
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Examples using patterns

• Heat propagation simulations with stencil

• Calculate heat propagation on a metal plate using the Laplace equation and Jacobi 
iteration.
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Examples using patterns

• Heat propagation simulations with stencil

• Calculate heat propagation on a metal plate using the Laplace equation and Jacobi 
iteration.

• the operation consists of calculating the average for all the cells on the surface and 
iterating until they converge.
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Examples using patterns

• Heat propagation simulations with stencil
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