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General concepts

• Sequential processing
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General concepts

• Parallel processing in shared memory
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General concepts

• Parallel processing in distributed memory
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Performance and Scaling



What is Computational Performance?

• In computing, performance is defined by 2 factors:

• Computational requirements (to be performed).

• Computational resources (what is the cost of doing so).

• Computational problems translate into requirements.

• Computational resources act as tradeoffs. 
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What is Parallel Performance/Performance?

• We are interested in knowing performance problems when using parallel computing 

environments.

• Performance is the reason for parallelism:

• If performance is not better, parallelism is not necessary.

• Parallel processing includes many techniques and technologies:

• Hardware, networks, operating systems, libraries, programming languages, compilers, 

algorithms, tools, etc..

• Parallelism must deliver better performance

o How? How much better?
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Expected performance

• If each processor works at k MFLOPS and there are p processors, then will we have k∗p

MFLOPS performance?

• If a task takes 100 seconds on 1 processor, shouldn't it take 10 seconds on 10 

processors?

• Many causes affect the performance of a parallel algorithm.

• It is necessary to understand all these causes.

• Solution to one problem might create another.

• Scaling is a desired feature in parallelism.
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"Embarrassing" parallel computation

• Embarrassing parallel computation is one that can be obviously divided into 

independent parts that run simultaneously.

• In many it is not necessary for interaction between processors.

• In others, distribution of results between processors may be necessary.

• Algorithms with this type of parallel computing have the potential to achieve 

maximum acceleration on parallel platforms.

• If solving a sequential problem takes T time, T/P time could potentially be achieved 

with P processors.
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Scaling

• An algorithm can scale to use many processors.

• How to evaluate scaling?

• Benchmarking:

✓ If we double the number of processors, is it linear scaling?.

• The key is to apply performance metrics.
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Performance Metrics



Performance metrics

• Evaluation.

• Sequential runtime (𝑇𝑠𝑒𝑐) is a function of:

• The size of the problem and architecture.

• Parallel runtime (𝑇𝑝𝑎𝑟) is a function of:

• The size of the problem and parallel architecture.

• Number of processors used in execution.

• Parallel performance is mainly affected by:

• Algorithm + architecture.

• Scaling

• It is the ability of a parallel algorithm to achieve performance improvements in proportion to 

the number of processors and the size of the problem..
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Performance metrics

• 𝑇1 is the runtime on a processor

• 𝑇𝑝 is the runtime in p processors

• 𝑆𝑝 is the acceleration 

• 𝑆𝑝 =
𝑇1

𝑇𝑝

• 𝐸𝑝 is efficiency

• 𝐸𝑝 =
𝑆𝑝

𝑝

• 𝐶𝑝 is the cost

• 𝐶𝑝 = 𝑝 × 𝑇𝑝
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Ideal acceleration versus reality 𝑆𝑝
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Performance Metrics: Amdahl's Law

• Let f be the fraction of a program that is sequential

• 1 − 𝑓 is the fraction that can be parallelized

• 𝑇1 is the runtime on a processor

• 𝑇𝑝 is the runtime in p processors

• 𝑆𝑝 is the acceleration 
• 𝑆𝑝 = Τ𝑇1 𝑇𝑝

• = ൗ𝑇1 (𝑓𝑇1 +
1−𝑓 𝑇1

𝑝
)

• = ൗ1 (𝑓 +
1−𝑓

𝑝
)

• Si 𝑝 → ∞

• 𝑆∞ = Τ1 𝑓
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Performance Metrics: Amdahl's Law

• When to apply Amdahl's Law?.

• When the size of the problem is fixed.

• Strong scaling (p→∞, S_p=S_∞→1/f ).

• Acceleration limit is determined by the degree of sequential execution, not the number of 

processors!

• is this good? Why?.

• Perfect efficiency is very difficult to achieve.

• See Amdahl paper attached to the course platform.
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Performance Metrics: Gustafson-Barsis Law

• Assume that parallel time is kept constant.

• 𝑇𝑝 = 𝐶 = 𝑓 + 1 − 𝑓 ∗ 𝐶

• 𝑓𝑠𝑒𝑐 is the fraction of Tp in sequential execution

• 𝑓𝑝𝑎𝑟 is the fraction of Tp running parallel.

• What is the runtime on a processor?

• Si 𝐶 = 1, then

• 𝑇𝑠 = 𝑓𝑠𝑒𝑐 + 𝑝 1 − 𝑓𝑠𝑒𝑐 = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟.

• What is the acceleration in this case?

• 𝑆𝑝 =
𝑇𝑠

𝑇𝑝
=

𝑇𝑠

1

• 𝑆𝑝 = 1 + (𝑝 − 1)𝑓𝑝𝑎𝑟
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Performance Metrics: Gustafson-Barsis Law

• When to apply the Gustafson-Barsis Law?.

• When the size of the problem may grow while the number of processors also increases

• Weak scaling (𝑆𝑝 = 1 + 𝑝 − 1 𝑓𝑝𝑎𝑟 )

• Acceleration function includes the number of processors!

• Can maintain or increase parallel efficiency while the problem scales.

• See Gustafson-Barsis paper attached to the course platform.
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Amdahl vs Gustafson-Barsis
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Amdahl vs Gustafson-Barsis
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Execution Models



Execution models: DAG

• Assume a program as a directed acyclic graph (DAG) of tasks

• A task cannot run until all its inputs are available

• Inputs come from outpus of other previously executed tasks

• DAG explicitly displays task dependency.

• Consider a "greedy" task scheduler to assign tasks to processors.

• There should be no idle processors as long as there are tasks to run.
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Execution models: DAG

• Example: 

• Each task takes 1 unit of time

• DAG has 7 tasks

• 𝑇1 = 7

• All tasks must be executed

• Tasks are executed in serial order

• Can tasks be executed in any order?

• 𝑇∞ = 5

• Time on the critical path

• In this case, it is the longest path of tasks with linear dependencies.
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Lower/Upper bound with "greedy" planning

• Suppose there are only p processors

• It is possible to write a formula to reflect the lower bound of 𝑇𝑝.

• 𝑀𝑎𝑥(
𝑇1

𝑝
, 𝑇∞) ≤ 𝑇𝑝

• 𝑇∞ is the best possible runtime

• Brent lemma for the upper bound

• Capture the additional cost of running other tasks that are not on the 

critical path

• Assume that this can be done without large additional costs

• 𝑇𝑝 ≤
𝑇1−𝑇∞

𝑝
+ 𝑇∞
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Lower/Upper bound with "greedy" planning

• Amdahl is optimistic

•
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