Computational Performance

Heterogeneous Computing

Professor: Dr. Joel Fuentes - jfuentes@ubiobio.c|

Teaching Assistants:
Daniel Lopez - daniel.lopezazoi@alumnos.ubiobio.cl
Sebastian Gonzalez - sebastian.gonzaleza8oi1@alumnos.ubiobio.cl

Course website: http://www.face.ubiobio.cl/~jfuentes/classes/ch

(A'Q)
Niiiid
~ -
\ LT/

UNIVERSIDAD DEL BiO-BiO
FACULTAD DE CIENCIAS EMPRESARIALES

mailto:jfuentes@ubiobio.cl
mailto:daniel.lopez1701@alumnos.ubiobio.cl
mailto:sebastian.gonzalez1801@alumnos.ubiobio.cl
http://www.face.ubiobio.cl/~jfuentes/classes/ch

Content

General concepts

Performance and scaling

Performance metrics
Amdahl's Law.

Gustafson-Barsis Law.

Execution models

DAG.

General concepts

- Sequential processing

General concepts

- Parallel processing in shared memory

12.07.2017, 14:00

General concepts

- Parallel processing in distributed memory

12.07.2017, 14:00
1

Performance and Scaling

What is Computational Performance?

In computing, performance is defined by 2 factors:
Computational requirements (to be performed).

Computational resources (what is the cost of doing so).
Computational problems translate into requirements.

Computational resources act as tradeoffs.

1
Solution Resources

Performance ~

Hardware Time

What is Parallel Performance/Performance?

We are interested in knowing performance problems when using parallel computing
environments.
Performance is the reason for parallelism:
If performance is not better, parallelism is not necessary.
Parallel processing includes many techniques and technologies:

Hardware, networks, operating systems, libraries, programming languages, compilers,

algorithms, tools, etc..

Parallelism must deliver better performance

How? How much better?

Expected performance

If each processor works at k MFLOPS and there are p processors, then will we have kxp
MFLOPS performance?

If a task takes 100 seconds on 1 processor, shouldn't it take 10 seconds on 10
processors?

Many causes affect the performance of a parallel algorithm.

It is necessary to understand all these causes.

Solution to one problem might create another.

Scaling is a desired feature in parallelism.

"Embarrassing" parallel computation

Embarrassing parallel computation is one that can be obviously divided into
independent parts that run simultaneously.

In many it is not necessary for interaction between processors.

In others, distribution of results between processors may be necessary.
Algorithms with this type of parallel computing have the potential to achieve
maximum acceleration on parallel platforms.

If solving a sequential problem takes T time, T/P time could potentially be achieved

with P processors.

Scaling

An algorithm can scale to use many processors.
How to evaluate scaling?
Benchmarking:
If we double the number of processors, is it linear scaling?.

The key is to apply performance metrics.

Performance Metrics

Performance metrics

Evaluation.
Sequential runtime (T,) is a function of:
The size of the problem and architecture.
Parallel runtime (T4) is a function of:

The size of the problem and parallel architecture.

Number of processors used in execution.
Parallel performance is mainly affected by:
Algorithm + architecture.
Scaling
It is the ability of a parallel algorithm to achieve performance improvements in proportion to

the number of processors and the size of the problem..

Performance metrics

T, is the runtime on a processor
T}, is the runtime in p processors

Sp is the acceleration

E, is efficiency

S
E, =2
b p

Cp is the cost

Cp =pXT,

Ideal acceleration versus reality S,

Performance Metrics: Amdahl's Law

Let f be the fraction of a program that is sequential
1 — f is the fraction that can be parallelized

T; is the runtime on a processor

T}, is the runtime in p processors

Sp is the acceleration
Sp == Tl/Tp

=T1/(fTy +
=1/(F +=5)
Sip - o0
Seo = 1/f

(1-1)Ty
)

Parallel Portion
—50%
— 750

— 908
—95%

Number of Processors

Performance Metrics: Amdahl's Law

When to apply Amdahl's Law?.

When the size of the problem is fixed.

Strong scaling (p—o0, S_p=5S_co—1/f).

Acceleration limit is determined by the degree of sequential execution, not the number of

processors!
is this good? Why?.
Perfect efficiency is very difficult to achieve.

See Amdahl paper attached to the course platform.

Performance Metrics: Gustafson-Barsis Law

Assume that parallel time is kept constant.
T,=C=(f+1—-f))=C
fsec is the fraction of Tp in sequential execution

fpar is the fraction of Tp running parallel.
What is the runtime on a processor?

SiC =1, then

Ts = fsec + (1 = fsec) = 1+ (= Dfpar-

What is the acceleration in this case?

Sp =1+ (p— 1)fpar

Performance Metrics: Gustafson-Barsis Law

When to apply the Gustafson-Barsis Law?.
When the size of the problem may grow while the number of processors also increases
Weak scaling (S, =1+ (p — D fpar)
Acceleration function includes the number of processors!

Can maintain or increase parallel efficiency while the problem scales.

See Gustafson-Barsis paper attached to the course platform.

Amdahl vs Gustafson-Barsis

Amdahl
=2

P=4 P=8
IIII IIIIIIII

P=1 P
serial work
parallelizable work

Amdahl vs Gustafson-Barsis

Gustafson-Baris

serial work

P=1 P=2 P=4 P=8
parallelizable work | |I |||I |I|I|II|

Execution Models

Execution models: DAG

Assume a program as a directed acyclic graph (DAG) of tasks
A task cannot run until all its inputs are available
Inputs come from outpus of other previously executed tasks
DAG explicitly displays task dependency.
Consider a "greedy" task scheduler to assign tasks to processors.

There should be no idle processors as long as there are tasks to run.

Execution models: DAG

Example:

Each task takes 1 unit of time
DAG has 7 tasks
T, =7
All tasks must be executed
Tasks are executed in serial order
Can tasks be executed in any order?
To =5

Time on the critical path

In this case, it is the longest path of tasks with linear dependencies.

Lower/Upper bound with "greedy" planning

Suppose there are only p processors

It is possible to write a formula to reflect the lower bound of T,.

T
Max(;l,Too) <T,

T is the best possible runtime
Brent lemma for the upper bound
Capture the additional cost of running other tasks that are not on the

critical path

Assume that this can be done without large additional costs

+ Too
p

Lower/Upper bound with "greedy" planning

Amdahl is optimistic

_— —Amdahl's Law

—Work-Span Bound

Brent's Lemma

References

Parallel Computing Center. University of Oregon

http://ipcc.cs.uoregon.edu/index.html

