
Compute Models
Heterogeneous Computing

Professor: Dr. Joel Fuentes - jfuentes@ubiobio.cl

Teaching Assistants:
• Daniel López - daniel.lopez1701@alumnos.ubiobio.cl
• Sebastián González - sebastian.gonzalez1801@alumnos.ubiobio.cl

Course website: http://www.face.ubiobio.cl/~jfuentes/classes/ch

mailto:jfuentes@ubiobio.cl
mailto:daniel.lopez1701@alumnos.ubiobio.cl
mailto:sebastian.gonzalez1801@alumnos.ubiobio.cl
http://www.face.ubiobio.cl/~jfuentes/classes/ch


Contents

• Flynn's taxonomy

• Types of parallelism

• Programming models

2



Flynn's taxonomy

• Taxonomy to classify computer systems by the number of instruction streams and 

data streams.

• Defined in 1972. Theory still used today.

• It has various restrictions, but at a general level it is useful.

3



Flynn's taxonomy

• SISD - Single Instruction Single Data

• SIMD - Single Instruction Multiple Data

• MISD - Multiple Instruction Single Data

• MIMD - Multiple Instruction Multiple Data 

4



SISD

• Single Instruction Single Data

• Corresponds to the architecture of Von Neumann

• Implements the universal Turing machine

• Serial algorithms

• Systems with this computing model execute one 

instruction at a time on a piece of data.

• Example: Single-core x86 processors

5



SIMD

• Single Instruction Multiple Data

• Corresponds to parallel computing units that operate on 

multiple data at once.

• The same instruction is applied on multiple (different) data.

• Vector-based programming.

• Examples: GPUs and AI accelerators.

6



SIMD

• Example of use:
for (i = 0; i < n ; i++){ 

x[i] += y[i]

}

If n processing units (PU) exist and they all execute the same 

instruction, then the full iteration can be executed by a SIMD 

instruction.

SIMD is very efficient at solving massive problems in data and 

vectors/arrays.

7



SISD vs SIMD

8



MIMD

• Multiple Instructions Multiple Data

• Supports simultaneous instruction flows operating on 

multiple data streams.

• Corresponds to multi-core computer systems, clusters, 

ccNUMA, etc.

• Usually each PU is executed asynchronously. There is no 

global clock signal.

• Can be implemented in shared memory system or 

distributed memory.

9



MISD

• Multiple Instructions Single Data

• Supports simultaneous instruction flows operating on a 

piece of data.

• Multiple PUs operate independently over the same data 

stream.

• Difficult and unviable implementation.

• Example: Systems that can be used to detect and correct 

errors.

10



Types of Parallelism

11Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Pipelining

• Corresponds to SISD architecture

12Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Instruction-level parallelism (ILP)

• Corresponds to SISD architecture

13Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Data-level parallelism

• Corresponds to SIMD architecture

14Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Data-level parallelism

• Corresponds to SIMD architecture

• Example of a sum in parallel:

15Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Parallelism at the thread level

• Corresponds to MIMD architecture

16Slide Source: S. Amarasinghe, MIT 6189 IAP 2007



Programming Models

• How to program the different computing models?

17



Programming Models

• How to program the different computer models?

• How do we maximize parallelism?

• In practice there are 3 major approaches used in modern processors and 

accelerators.

• Multi-threaded programming

• Multi-threaded programming with multiple data (SIMD)

• Multi-thread programming with individual data (SIMT )

18



Programming Models: Multi-Threaded

• Multi-threaded parallelism

• Found in modern CPUs

• Multiple threads access individual data from shared data structures in main memory.

19



Programming Models: Multi-Threaded SIMD

• Multi-threaded parallelism + data parallelism

• Found in GPUs and some CPUs (e.g. with AVX support) 

• Multiple threads access multiple data from shared data structures in main memory.

20



Programming Models: Multi-Threaded SIMT

• Multi-threaded parallelism in SIMD computing units

• Found in GPUs and AI accelerators

• Multiple threads access individual data by executing the same instruction 

21



Programming Languages and Frameworks

• SISD

• C++, Java, etc.

• MIMD

• C++, Java, OpenMP

• SIMD

• DPC++, C-for-Metal, OpenCL, C++ con extensions

• SIMT

• OpenCL, CUDA, DPC++

22



Programming Languages and Frameworks

• CPU multi-core

• C++, Java, OpenMP, DPC++

• GPU

• OpenCL, CUDA, DPC++, OpenACC

• FPGA

• OpenCL, DPC++

23



References

• S. Amarasinghe, MIT 6189 IAP 2007 

• John Cavazos A General Discussion on Parallelism. University of Delaware 
http://www.cis.udel.edu/~cavazos/cisc879

24

http://www.cis.udel.edu/~cavazos/cisc879

