
Programming Frameworks
Heterogeneous Computing

Professor: Dr. Joel Fuentes - jfuentes@ubiobio.cl

Teaching Assistants:
• Daniel López - daniel.lopez1701@alumnos.ubiobio.cl
• Sebastián González - sebastian.gonzalez1801@alumnos.ubiobio.cl

Course website: http://www.face.ubiobio.cl/~jfuentes/classes/ch

mailto:jfuentes@ubiobio.cl
mailto:daniel.lopez1701@alumnos.ubiobio.cl
mailto:sebastian.gonzalez1801@alumnos.ubiobio.cl
http://www.face.ubiobio.cl/~jfuentes/classes/ch

Contents

• CUDA

• SYCL (DPC++)

2

Programming Languages and Frameworks

• CPU multi-core

• C++, Java, OpenMP, DPC++

• GPU

• OpenCL, CUDA, DPC++, OpenACC

• FPGA

• OpenCL, DPC++

3

CUDA

4

CUDA

• Compute Unified Device Architecture

• Extended C programming

• Serial code programming on Host (CPU)

• Parallel code programming on Device (GPU)

5

CUDA

• GPU can run many threads simultaneously, but not independently

• Threads on Device connected in groups called warps

• All members of a warp execute the same operation
• SIMT = Single Instruction, Multiple Threads

• Programmer writes function that runs on the device (kernel)

• Function is invoked with a number of blocks

• All threads execute the same function

• Host and GPU have separate memory spaces

• Memory must be explicitly transferred

6

1. copy data

operation

Host
2. perform
GPU

3. transfer results

CUDA

• Extended C

7

#include <stdio.h>

__global__ void hello() {
int id = threadIdx.x + blockIdx.x * blockDim.x;
printf("Hello from thread %d (%d of block %d)\n",
id, threadIdx.x, blockIdx.x);

}

int main() {
//launch 3 blocks of 4 threads each
hello<<<3,4>>>();

//make sure kernel completes
cudaDeviceSynchronize();

}

Declarations
global, device, shared, local, constant

Keywords
threadIdx, blockIdx

Intrinsics
__syncthreads

Runtime API
• Memory, symbol, execution management

CUDA

• Possible output of the example

• Threads and blocks are executed in any order

8

Hello from thread 0 (0 of block 0)
Hello from thread 1 (1 of block 0)
Hello from thread 2 (2 of block 0)
Hello from thread 3 (3 of block 0)
Hello from thread 8 (0 of block 2)
Hello from thread 9 (1 of block 2)
Hello from thread 10 (2 of block 2)
Hello from thread 11 (3 of block 2)
Hello from thread 4 (0 of block 1)
Hello from thread 5 (1 of block 1)
Hello from thread 6 (2 of block 1)
Hello from thread 7 (3 of block 1)

CUDA

• In CUDA all threads run the same code

• Each thread has its ID which is used to calculate memory accesses and make control decisions

9

CUDA

• Threads are organized into multiple blocks

• Threads in a block can cooperate through the use of shared memory, atomic operations, and

synchronization barriers.

• Threads in different blocks cannot cooperate.

10

CUDA: Ejemplo suma de vectores

11

int main() {
int* a; //first input array (on host)
int* a_dev; //first input array (on device)

a = (int*) malloc(N*sizeof(int));
cudaMalloc((void**) &a_dev, N*sizeof(int));

… //same for b and res

free(a);
cudaFree(a_dev);

}

• On the host:
1. Reserve memory on device
2. Copy data to device
3. Call the kernel
4. Copy results to the host
5. Free device memory

• On device:
1. __global__
2. Determine thread ID

CUDA: Ejemplo suma de vectores

12

int main() {
…
int threads = 512; //# threads per block
int blocks = (N+threads-1)/threads;

//# blocks (N/threads rounded up)

kernel<<<blocks,threads>>>(res_dev, a_dev, b_dev);
…

}

• En el host:
1. Reserve memory on device
2. Copy data to device
3. Call the kernel
4. Copy results to the host
5. Free device memory

• On device:
1. __global__
2. Determine thread ID

CUDA: Ejemplo suma de vectores

__global__ void kernel(int* res, int* a, int* b) {
//sets res[i] = a[i] + b[i]
//each thread is responsible for one value of i

int thread_id = threadIdx.x + blockIdx.x*blockDim.x;

if(thread_id < N) {
res[thread_id] = a[thread_id] + b[thread_id];

}
}

• En el host:
1. Reserve memory on device
2. Copy data to device
3. Call the kernel
4. Copy results to the host
5. Free device memory

• On device:
• __global__
• Determine thread ID

SYCL

14

SYCL

• SYCL is a proposal for XPU (GPU, CPU and FPGA).

• It corresponds to a C++ extension to support heterogeneous programming.

• Built from OpenCL fundamentals (evolution)

• Developed by the Khronos https://www.khronos.org/ group

15

SYCL

• Platforms that support SYCL:

16

SYCL

• Heterogeneous languages

17

• Domain-specific language and libraries
• Graph-based models

• High-level programming models
• Programmer specifies what should be executed

• Low-level programming models
• Programmer has precise control over how everything is executed

Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

SYCL

• Problem: Different hardware requires different programming approaches

• Functionality can be portable, but not performance

• An algorithm optimized for a particular architecture can run very badly on another.

Partial solution: Consider a higher-level language.

18Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

SYCL

19Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

const char *src =
“__kernel void vecadd(global int *A,\n”
“ global int *B,\n” “ global int *C) {\n”
“ size_t gid = get_global_id(0);\n”
“ C[gid] = A[gid] + B[gid];\n”
“}”

clSetKernelArg(k, 0, sizeof(cl_mem), &ABuf);
clSetKernelArg(k, 1, sizeof(cl_mem), &BBuf);
clSetKernelArg(k, 2, sizeof(cl_mem), &CBuf);

clEnqueueNDRangeKernel(q, k, 1, NULL, {SIZE}, {32, 1, 1}, 0,
NULL, NULL);

auto A = ABuf.get_access(cgh);
auto B = BBuf.get_access(cgh);
auto C = CBuf.get_access(cgh);

cgh.parallel_for(
cl::sycl::range(CBuf.size()),
[=](cl::sycl::id idx) {

C[idx] = A[idx] + B[idx];
});

OpenCL SYCL

References

• ToUCH: Teaching Undergrads Collaborative and Heterogeneous Computing in Consortium for Computing
Sciences in Colleges South Central Conference (CCSC19), 2019

• Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability.
2017.

20

