Programming Frameworks

Heterogeneous Computing

Professor: Dr. Joel Fuentes - jfuentes@ubiobio.cl

Teaching Assistants:
Daniel Lopez - daniel.lopezazoi@alumnos.ubiobio.cl
Sebastian Gonzalez - sebastian.gonzalezi8o1@alumnos.ubiobio.c|

Course website: http://www.face.ubiobio.cl/~jfuentes/classes/ch

AQ
Niiiid

~te
\€23/

UNIVERSIDAD DEL BiO-BiO
FACULTAD DE CIENCIAS EMPRESARIALES

mailto:jfuentes@ubiobio.cl
mailto:daniel.lopez1701@alumnos.ubiobio.cl
mailto:sebastian.gonzalez1801@alumnos.ubiobio.cl
http://www.face.ubiobio.cl/~jfuentes/classes/ch

Contents

CUDA
SYCL (DPC++)

Programming Languages and Frameworks

CPU multi-core

C++, Java, OpenMP, DPC++

GPU
OpenCL, CUDA, DPC++, OpenACC

FPGA
OpenCL, DPC++

CUDA

Compute Unified Device Architecture

Extended C programming

Serial code programming on Host (CPU)

Parallel code programming on Device (GPU)

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args);

CUDA

GPU can run many threads simultaneously, but not independently
Threads on Device connected in groups called warps

All members of a warp execute the same operation
SIMT = Single Instruction, Multiple Threads

Programmer writes function that runs on the device (kernel)

Function is invoked with a number of blocks
All threads execute the same function

Host and GPU have separate memory spaces 1. copy data

Memory must be explicitly transferred 2GIfDU
. perform
operation

3. transfer results

~ @@

Extended C

#include <stdio.h>

Declarations

global, device, shared, local, constant __global void hello() {
int id = threadIdx.x + blockIdx.x * blockDim.x;
printf ("Hello from thread %d (%d of block %d)\n",

Keywords id, threadldx.x, blockIdx.x);

threadldx, blockldx

L int main() {
Intrinsics //launch 3 blocks of 4 threads each
__syncthreads hello<<<3,4>>>();

) //make sure kernel completes
Runtime API cudaDeviceSynchronize () ;

* Memory, symbol, execution management

Possible output of the example

Threads and blocks are executed in any order

Hello from thread o (o of block o)
Hello from thread 1 (2 of block o)
Hello from thread 2 (2 of block o)
Hello from thread 3 (3 of block o)
Hello from thread 8 (o of block 2)
Hello from thread g (2 of block 2)
Hello from thread 10 (2 of block 2)
Hello from thread 11 (3 of block 2)
Hello from thread 4 (o of block 1)
Hello from thread 5 (2 of block 1)
Hello from thread 6 (2 of block 1)
Hello from thread 7 (3 of block 1)

In CUDA all threads run the same code

Each thread has its ID which is used to calculate memory accesses and make control decisions

threadiD |o|1|2[3]|4]|5]6]7]

float x = input[threadID];
float y = func(x);
output[threadID] = y;

Threads are organized into multiple blocks

Threads in a block can cooperate through the use of shared memory, atomic operations, and

synchronization barriers.

Threads in different blocks cannot cooperate.

Thread Block 0 Thread Block 0 Thread Block N - 1

threadID 0] 1] 2] 3|4|5]|6 0| 1] 2| 3| 4| 5] 6 0] 11 2] 3] 4] 5]6]7

float x = float x = float x =
input[threadID] ; input [threadID] ; input[threadID] ;
float y = func(x); float y = func(x); float y = func(x);
output [threadID] = y; output[threadID] = y; output [threadID] = y;

CUDA: Ejemplo suma de vectores

int main () {
int* a; //first input array (on host)
int* a dev; //first input array (on device)

a = (int*) malloc (N*sizeof (int));

[cudaMalloc ((void**) &a dev, N*silzeof (1nt));

//same for b and res

free(a);

[cudaFree (a_dev);

}

* Onthe host:

Reserve memory on device

Copy data to device
Call the kernel

Copy results to the host
Free device memory

* Ondevice:
1. __global__
2. Determine threadID

CUDA: Ejemplo suma de vectores

int main () { * Enelhost:

int threads = 512; //# threads per block . Reserve memory on device
int blocks (N+threads-1) /threads; .
Vi
//# blocks (N/threads rounded up) Copy data to device
Call the kernel

Copy results to the host

[kernel<<<blocks,threads>>>(res_dev, a_dev, b dev);]

Free device memory

* On device:
1. __global__
2. Determine thread ID

CUDA: Ejemplo suma de vectores

[global -]void kernel (int* res, int* a, int* b) { e Enelhost:
sets res[i] = al[i] + bl[i] _
//each thread is responsible for one value of i . Reserve memory on device

Copy data to device
Call the kernel
if (thread id < N) { . Copy results to the host

res[thread id] = a[thread id] + b[thread id];
} . Free device memory

[int thread id - threadIdx.x + blockIdx.x*blockDim.x;

* \On device:
* __global__
* Determine thread ID

SYCL

SYCL

- SYCL is a proposal for XPU (GPU, CPU and FPGA).

- It corresponds to a C++ extension to support heterogeneous programming.

- Built from OpenCL fundamentals (evolution)

- Developed by the Khronos https://www.khronos.org/ group

SYCL

- Platforms that support SYCL:

Implementation Supported Platforms

Windows 10 Visual Studio 2019 (64bit)*

C teC
T e Ubtuntu 18.04 (64bit)

Intel DevCloud

Windows 10 Visual Studio 2019 (64bit)
Red Hat Enterprise Linux 8, CentOS 8
Ubtuntu 18.04 LTS, 20.04 LTS (64bit)
Refer to System Requirements for more
details

hipSYCL Any Linux

Supported Devices

Intel CPU (OpenCL)
Intel GPU (OpenCL)

Intel CPU (OpenCL)
Intel GPU (OpenCL)
Intel FPGA (OpenCl)
Nvidia GPU
(CUDA)**

CPU (OpenMP)
AMD GPU
(ROCm)***

Nvidia GPU (CUDA)

Required Version

CE240

Latest develop
branch

SYCL

- Heterogeneous languages

e Domain-specific language and libraries
e Graph-based models

e High-level programming models
e Programmer specifies what should be executed

High-level

e Low-level programming models
e Programmer has precise control over how everything is executed

Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

SYCL

- Problem: Different hardware requires different programming approaches
- Functionality can be portable, but not performance

- An algorithm optimized for a particular architecture can run very badly on another.

Partial solution: Consider a higher-level language.

Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

OpenCL SYCL

const char *src - . auto A = ABuf.get access(cgh);
“ kernel void vecadd(global int *A,\n” auto B = BBuf.get access(cgh);

“ global int *B,\n” “ global int *C) {\n” auto C CBuf.get access (cgh);

“ size t gid = get global id(0);\n” -

“ C[gid] = A[gid] + B[gid]l;\n” cgh.parallel for (

wy cl::syéi::range(CBuf.size()),
[=](cl::sycl::id idx)

clSetKernelArg(k, 0, sizeof(cl mem), &ABuf); Clidx] = A[idx] + B[idx];
clSetKernelArg(k, 1, sizeof(cl mem), &BBuf); /
clSetKernelArg(k, 2, sizeof(cl mem), &CBuf);

clEnqueueNDRangeKernel (g, k, 1, NULL, {SIzZE}, {32, 1, 1}, O,
NULL, NULL);

Source: Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability. 2017.

References

ToUCH: Teaching Undergrads Collaborative and Heterogeneous Computing in Consortium for Computing
Sciences in Colleges South Central Conference (CCSCag), 2019

Alastair Murray. Codeplay. Layering Abstractions, Heterogeneous Programming and Performance Portability.
2017.

